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ABSTRACT 

Using the geometrical optics (GO) and physical optics (PO) approximations, 
a correct, complete, ready-to-use formula is derived for the backscatter (monostatic) 
polarization scattering matrix (PSM) of the perfectly conducting right dihedral at 
arbitrary incidence angle. The absence of such a result from the literature is sur- 
prising given that the dihedral's PSM is needed in many applications, such as in the 
calibration of polarimetric radars, including synthetic aperture radars (SAR), in the 
generation of simulated polarimetric radar imagery, and in automatic target recog- 
nition (ATR). Because the new results provided are important to many researchers 
who may not be experts in electromagnetic theory (as is often the case for the 
computer-vision researchers working on ATR), the report is relatively self-contained 
and takes the reader from the definitions of PSMs and complex radar cross-sections, 
through the mathematical formulation of Huygen's Principle, the combined use of 
GO and PO, and changes of polarization bases, to the derivation, discussion, and 
simplification of the dihedral's PSM. 

in 
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1.   INTRODUCTION 

The right-angle dihedral (DI) corner reflector is an important reference device for calibrating 
radar systems. It is often used in conjunction with the right-angle trihedral (TRI) corner reflector, 
the scattering properties of which are, to some degree, complementary. 

1. The strongest returns from a DI are due to double-bounce interactions, in which the 
incident wave successively hits both faces of the DI before being returned towards the 
source (thus, DIs are known as double-bounce or even-bounce scatterers). In contrast, 
the strongest returns from a TRI are due to triple-bounce interactions, in which the 
incident wave hits all three faces of the TRI in succession (thus, TRIs are known as 
triple-bounce or odd-bounce scatterers). 

2. The DI produces a strong return for simultaneous transmit right (or left) circular 
polarization and receive right (or left) circular polarization. In contrast, the TRI 
produces a strong return for opposite transmit and receive circular polarizations. 

3. The backscatter pattern of the DI is broad in a plane perpendicular to its crease and 
narrow in planes containing it. In contrast, the backscatter pattern of the TRI is 
relatively narrow. 

Even though these properties, as well as others, are well documented, the literature does not 
readily provide formulas for the backscatter (or monostatic) polarization scattering matrix (PSM) 
of elementary scatterers (such as the dihedral and trihedral) at arbitrary incidence angles. 

The absence of such formulas may result from the fact that fully polarimetric radars are 
relatively new. The recent availabiltity of fully polarimetric SAR imagery (e.g., from the ERIM [1], 
JPL [2], and MIT [3] airborne sensors) has led to a resurgence of interest in polarimetry and to a 
quest for analytical formulas describing the monostatic PSMs of elementary scatterers at arbitrary 
incidence angles. 

Accurate PSM formulas for elementary scatterers are needed by a class of computer codes pre- 
dicting the appearance (or signature) of complex targets in polarimetric range profiles or range/cross- 
range images. For example, SarTool [4] first decomposes CAD models of complex targets into their 
constituent elementary scatterers and then essentially add their properly transformed PSMs to 
produce the PSM of the targets. In the case of range profiles and range/cross-range images, the 
calculation is repeated for each point in the profile or image. 

Simple, closed-form expressions for the PSMs of elementary scatterers are also needed by 
computer-vision/image-understanding researchers developing automatic target recognition (ATR) 
algorithms. In one fine of research, bright, contrasted, point-like features are extracted and labeled, 
e.g., as being "dihedral-like". Generally, these labels are found using techniques based on the early 
work of Huynen [5] (e.g., see Cameron and Leung [6]). However, much work remains to be done to 
solve this difficult "inverse problem." 



A number of techniques can be used to predict the PSMs of elementary scatterers, but com- 
bining geometrical optics (GO) [7, p. 869] and physical optics (PO) [7, p. 870] provides the simplest 
possible formulas still having a reasonable degree of accuracy. In the case of the dihedral and tri- 
hedral, the author is not aware of any report providing, by one method or another, ready-to-use, 
accurate, closed-form PSM formulas at arbitrary incidence angle. Blejer [8, 9] comes close to pro- 
viding such formulas, but the results he gives should be questioned because of likely errors and 
omissions in the paper by Corona et al. [10] from which these results are derived. 

The first goal of the present report is to correct the above problems for the dihedral, thereby 
providing an accurate set of formulas for the dihedral's monostatic PSM resulting from combined 
GO and PO. The second goal is to make the report accessible to researchers who need such formulas 
and are not experts in electromagnetic (EM) theory, as is often the case in the ATR and computer- 
vision communities. 

Now, a brief chronological review of relevant, prior work on the analysis of the dihedral's PSM 
is provided. 

Knott [11] considers an obtuse-angle dihedral, with illumination perpendicular to the crease 
and with arbitrary polarization. Single-bounce (SB) and double-bounce (DB) returns are handled 
by using PO to deal with scattering by the last surface encountered (in the SB and DB cases) and 
GO to deal with reflections from the first surface in the DB case. The goal of the paper is to study 
the effect of the dihedral angle on radar cross section. 

Corona et al. [10] extend Knott's work to arbitrary incidence. Even though their results are 
correct in the case of normal incidence, they are believed to be erroneous and incomplete in the 
general case. 

Blejer [8, 9] used Corona's incorrect and incomplete results to derive the PSMs of the dihedral 
and trihedral. These formulas are apparently used in the prediction code SarTool [4]. 

Griesser et al. [12] consider a problem similar to Knott's (incidence normal to crease; vertical 
and horizontal polarizations), but they deal with arbitrary dihedral angles, as well as with single-, 
double-, and triple-bounces, single refractions, and reflection-diffractions, using various combina- 
tions of GO, PO, and PTD (physical theory of diffraction). 

Corona et al. [13] use a generalization of PO to study the effect of surface loading in the case 
of orthogonal incidence. 

Anderson [14] considers vertical and horizontal polarizations at arbitrary incidence angles 
on dihedrals with angles no smaller than 60 deg, and uses PO to compute single-, double-, and 
triple-bounce terms. However, the integrated forms of key surface integrals are not given in the 
paper. 

Atkins and Shin [15] propose a new approach for dealing with multiple bounces between two 
possibly-disjoint polygonal plates (a special case of which is the dihedral), where they avoid using 
GO for dealing with intermediate reflections. 



This report explores in detail the derivation of the PSM of the (unloaded) right dihedral 
under the approximations of GO and PO. As already indicated, it is written to make the informa- 
tion accessible to the nonexpert, in particular to researchers in computer-vision and ATR. Thus, 
this report begins with a brief review of fundamental concepts, such as PSMs, complex radar 
cross sections, changes of polarization basis, GO, and PO. Then, a general expression for the field 
backscattered by the dihedral is derived, avoiding the premature combination of SB and DB terms. 
An important dichotomy arising in the integration of a DB surface integral is carefully considered. 
Finally, the PSM of the dihedral is derived, the relative contributions of the SB and DB terms 
are compared, and simplified formulas are derived, which agree with the expression used almost 
exclusively by those working the inverse problem (e.g., Huynen [5] and Cameron and Leung [6]). 



2.   BACKGROUND 

2.1    Fields 

Consider time-harmonic, i.e., monochromatic, EM fields with angular frequency ui = 2irc/\, 
where c is the speed of light and A the wavelength of interest. Using a time-dependence eJa;i, the 
electric field at any point fp can be written as [16, p. 46] 

E{fp,t)^Ue{E{fp)e^}. (1) 

This report focuses on the complex, time-independent field E(fp), also known as a phasor. The 
physical field can be retrieved at any time through Equation (1). These remarks also apply to the 
magnetic field H. 

In the classical treatment of scattering, the wave incident on the scatterer is assumed to be 
a plane wave and the scattered wave is an outgoing spherical wave that, in the far zone of the 
scatterer, can be treated locally as a plane wave. 

Plane wave are characterized by their propagation, or wave, vector k — kk, where k — 2w/X 
and, in general, x denotes the unit vector corresponding to x. In the case of linear polarization 
characterized by a polarization p orthogonal to the propagation direction k, the complex field 
E(rP) = Ep(rP) is [16, p. 54] 

Ep(fp) = Epe-iJs-fPp (2) 

where Ep is the complex magnitude of the field at fp = 0. The case of arbitrary polarization is 
considered below. 

2.2    Scattering 

Consider the scattering geometry of Figure 1. The scatterer is assumed to be located near 
the origin 0 of the (x, y, z) coordinate system, and the sensor is assumed to be located at a point S 
with spherical coordinates (r,0,<f>). With each S, one associates a unique coordinate system defined 
by the unit vectors f, 0, and 4>: r is defined by the vector 'OS = r;4>is perpendicular to the plane 
defined by S and the 2-axis, and oriented in the sense of increasing <f>; and 0 is perpendicular to 
the plane (f, <j>) and oriented in the sense of increasing 0, with the result that the frame (f, 0,4>) is 
right-handed. Of course, the sensor position is given by f = rf. 
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Figure 1.    Scattering geometry. 

Consider an EM field transmitted from S towards 0. If the scatterer is in the far zone of 
the transmitting antenna, this field can be treated as a plane wave traveling in the k — kt = —f 
direction. In the case of linear polarization along p (perpendicular to f), the "transmitted" complex 
field Et(fp) can be written as in Equation (2). In the case of arbitrary polarization, Et(fp) can 
be described in terms of its components in a polarization basis (AB) characterized by its basis 
vectors h^ and KB- A particularly convenient basis for the intended analysis is the (HV) basis (H 
= horizontal, V = vertical), the basis vectors of which are the vectors 4> and 6 of Figure 1, i.e., 
hjj — 4> and hy — 6. Other choices of basis are discussed later. In the (HV) basis, one has 

E\fP) = EUrP) + El(fp) (3) 

with [see Equation (2)] 

ElXfp) = El e-^-rp * 
Pt Pt (4) 



where pt is either $ or 9. Equation (3) can thus be written as 

E\fP) = El e-^-fP (5) 

with 

Et = Ei
1^+Et

se. (6) 

The magnitudes and phases of the complex numbers E*- and J5| fully determine the polarization 

characteristics of the transmitted field E\fP). Note that the plane wave described by E\rP) is a 
local approximation to a spherical wave originating from S, so that E*~ and Ej should include the 

1/r attenuation associated with the distance r from S to 0. However, this report treats E\fP) as 
a true plane wave and, thus, El~ and Ej as (complex) constants. 

The currents induced on the surface of the scatterer by the incoming wave produce a scattered 
EM field. In the far zone of the scatterer, this field is effectively a spherical wave originating from 
0 that can be approximated locally by a plane wave. Limiting the analysis to the backscattering 
case (i.e., to transmit and receive sensors co-located at 5), the "received" £-field can be expressed 

as 

Er(r) = Er
$(r)4> + Er

s(f)6. (7) 

Note the use of f (instead of fP) since one is only interested in the fields at the receiver. Also note 
that the f-dependencies have not been factored out [in contrast to what was done in Equations (5) 

and (6) with regard to fP}. 

2.3    Polarization Scattering Matrix 

It is well-known [17, 18, 19] that the complex components Ej(f) and Er-(r) of the received 

field Er{r) are linearly related to the complex components E*. and Ej characterizing the value of 

the transmitted field at the origin 0, i.e., of E\fP = 0). This linear relation is written as 

a(k,r)       W     &   \\     * (8) 



or 

Er{f) = a(Jfe, r) S & (9) 

where the use of the scale factor a(k, r) reflects the lack of universal agreement on the definition 
of the (polarization) scattering matrix S. Typical values for a(k, r) are 

i,f—,1—. (10) 
r kr 

Note the slight, inconsequential abuse of notation for E* and Er(f). Indeed, these symbols 
denote 3-D vectors [in the (x,y,z) frame] in Equations (6) and (7), and 2-D vectors [in the (0,0) 

frame] in Equation 9. 

In practice, the elements Sprpt of 5 (with pr and pt taking either of the values j> or 0) can 

be found as follows. Consider a transmitted field that is linearly polarized along pt = <f> or pt = 0 
and has some arbitrary complex magnitude E0. Such a field can be described by Equation (4) with 

Ei  - E0. From Equation (6), it follows that 
Jrt 

Et = E0pt. (11) 

Using this expression in conjunction with Equations (8) and (9), one finds 

E^(f) = a(k,r)SprPtE0 (12) 

so that 

c. „  =_J Sill (13) 
PrPt      a(k,r)     EQ    ' 

Because Er~   is the component along pr of the field E^(r) received when the transmitted field has 
P: 

complex amplitude E0 and polarization pt, one can be rewrite (for future use) Equation (13) as 

_j_V^ 4) 
PrPt      a(k,r)       E0      ' 



2.4    Complex Radar Cross-Sections 

Because of the lack of agreement on the definition of a(k, r), it is useful to first find the 
scatterer's complex radar cross sections (C-RCS) yjäp\ft 

for tne various combinations oipt and pr, 

and then express each Sp^ in terms of the corresponding ^/öj^ (note that ^/ö^ft is the symbol 

denoting each C-RCS). The more familiar radar cross sections (RCS) «x^ are obtained by taking 

the square of the magnitude of J^h\K- 

The agreed-upon definition for the C-RCS is [8] 

/       ,.      n  r~   %(f)-^   ihr faj = hm 2> -£- elkr. 
Y    PrFt        r-+oo tiQ 

(15) 

In all cases of interest here, the limit in Equation (15) can be ignored, so that the desired relationship 

is 

sPrpt=ß(k^\rpJt (16) 

where 

^—ikr 

ß{k^~ 2^ra(k,rY 
(17) 

The values of ß(k, r) for the three common choices in Equation (10) are 

,—ihr k 

2yßr'  2^'  2yft' 
(18) 

Equation (15) can be used to define a C-RCS matrix y/ä analogous to the scattering matrix 

S in Equations (8) and (9), i.e., 

/ 

\fo = 
\ 

(19) 



Clearly 

S = ß(k,r)yfc. (20) 

2.5     Change of Polarization Basis 

The previously-selected basis vectors hH = 4> and hv = 0 of the linear basis (HV) are true 
3-D space vectors with real-valued components. However, in general, the basis vectors hA and hB 

defining a basis (AB) may be three-component vectors with complex-valued components. A typical 
example is the left-right circular basis (LR) with basis vectors hL and KR related to hH and hv by 

(21) 
^hR J      V2 y 1    -j J \hv ) 

or, symbolically, 

h(LR) = T(HV-*LR)h(HV) (22) 

where 

T(HV-*LR) 
(23) 

and, in general, fy^s)is a "vector," the elements of which are the unit vectors hA and hB associated 
with the basis (AB). In the general case of two bases (AB) and (A'B'), one writes 

h(A'B') - T(AB^A>B')h(AB)- (24) 

Although the transformation T(HV->LR) given in Equation (23) appears to be the one most often 
used to relate (HV) and (LR), this transformation is not universally agreed upon [20, p. 17], [8, 

p. 4]. 

10 



The effect of a "change of basis" on the scattering matrix is a delicate subject treated in 
detail in Appendix A, where it is shown that a dual change of basis is actually used, with one 
change for the transmitted field, and one separate, related change for the received field. If the 
scattering matrix is given by S(AB) when the transmitted field Et is expressed in basis_(A5), then 
Equation (A.l) and (A.2) show that the scattering matrix S(A>B') corresponding to E* expressed 

in basis (A'B') is 

= U
T

S<ABV (25) ->{A'B<) - u    J(AB) 

with 

U = TT (26) 

where, in general, AT denotes the transpose of A. Obviously, Equation (25) can also be written as 

S(A'B') = TS(AB)T   • (27) 

Carefully note that one has not said in which basis the received field Er is expressed and that 
Equation (25) cannot generally be derived from Equation (8) by performing a true change of basis 

(these points are discussed in Appendix A). 

For calculation purposes, observe that U and T are both unitary matrices [see Equations (A.9) 
and (A.10)]. Finally, for future reference, note that the relation between the linear-basis scattering 

matrix 

s{HV) = [ SHH SHV ) ^ 
\ SHV   SVV J 

and the corresponding circular-basis scattering matrix 

_ ( SLL    SLR   . ,29) 

\  JLR    JRR 

11 



is given by 

_ 1 / 1    j  \( SHH   SHV \     1    1   I (30) 
S(LR) ' 2 I 1   -j J I SHy   Syy ) [ j   -j 

or 

Sjm^L + jsHV        ^¥^       V (3D 
S(LR) ~ I Snn+Syy SffH-Syy _ j SjJV J 

Clearly, a similar formula can be written for the C-RCS matrix Jd. 

2.6    Huygen's Principle 

The key formula for computing the field E^ appearing in Equations (14) and (15) is the 

mathematical expression of Huygen's principle [16, p. 399, but with e^], i.e., 

V)-^111-^//^^^ (32) 

where a is the permeabüity of the medium (assumed isotropic), S> the surface <rf the scatter« (with 
;"nts ?l and^f') the surface current induced on S> by a transmitted wave wrth polanzat.on 

Pt- 
The dyadic operator [I - tf] applied to some arbitrary vector a should be interpreted as 

-,.-N (33) [I - ff]ä = ö - r(r.a) 

which has the dfect of removing the component of ä along f, thereby yielding the projection of ä 

in the plane (0>), i.e., 

- - (34) 
[I _ ff]ä = ^.ä) + 0(0.ä). v 

12 



The dyadic operator can thus be rewritten as 

I-fr = H> + 09. (35) 

Note that e~ikr[I - fr] is a mathematical expression of the fact that Ept(r) is an outgoing 
spherical wave, which is precisely the assumption made previously in the discussion leading to 
the definition of the scattering matrix S. In fact, Equation (32) can be used to obtain explicit 
expressions for the <j> and 9 components of Ept(r) that appear in Equation (7), but this is not 
further explored here. 

2.7     Geometrical and Physical Optics Approximations 

One needs to relate the surface current JSjpt(rP) to the transmitted, linearly polarized (along 

pt) wave characterized by [see Equation (4)] 

El(rp) = Eit e-*-** ft = 2^ e^> pt. (36) 

For compatibility with Equations (14) and (15), Ei   is set to E0 [see Equation (11)], so that 

Equation (36) becomes 

Eit(rP) = Eo e-fk<-fP pt = E0 e
ik^P Pt. (37) 

To find JSfi (?), one also needs the magnetic field H^ associated with _E|t [16, p. 55], i.e., 

HUfp) = — kt x EUfp) = -— E0 e~ik^P T x pt. (38) 

The counterpart of Equation (37) is thus 

Stt(fP) = Ho e-^P at = H0 e
ikf-fP at (39) 

13 



with the complex value HQ given by 

Ho = —E0 (40) 

and 

at=[\   'liPt = * (41) 
-<j>   if Pt = 0. 

For a number of elementary scatterers of interest (e.g., the dihedral considered later in the 
report), it is necessary to consider not only single-bounce interactions, but also multi-bounce inter- 
actions (e.g., double-bounce in the case of the dihedral). Here, one follows the customary practice 
of using PO to compute the field backscattered by the last surface participating in a particular 
interaction, and of using GO to handle scattering by intermediate surfaces. The following analysis 
relies on the assumption that all scattering surfaces are perfect conductors. 

First, the magnetic field HUr') incident on the last scattering surface (S') is derived from 
Hi (fp) and the scatterer's geometry through the laws of GO. Second, one uses_the PO approxima- 
tion to relate the surface current Jspt(r') appearing in Equation (32) to #)t(r'), i.e., [7, Equation 

(38)], 

_■     _        f 2 h(r') * Hi (?)   on iUuminated part of S' ,tn. 
,yt I   0 on shadowed part of S 

where n(r') is the unit normal to S' at r'. 

14 



3.   BACKSCATTERED E-FIELD FOR DIHEDRAL 

In this section, compact, nonintegral expressions are derived for the field Eß (f) [given by 

Equation (32)] backscattered from a perfectly conducting dihedral sized and positioned as indicated 
in Figure 2. Recall that the subscript pt indicates that the field corresponds to a transmitted plane 
wave linearly polarized along pt. This wave is characterized by the E-field of Equation (37) or, 
equivalently, by the H-field of Equation (39). 

209852-1 

Figure 2.    Dihedral geometry. 
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3.1     Single-Bounce Integral Expression 

The dihedral exhibits two distinct single-bounce (SB) interactions. The first corresponds to 
backscattering of the transmitted wave by the surface Si of the side normal to y, and the second to 
backscattering of the same wave by the surface S2 of the side normal to x. Both interactions can 
be treated jointly by denoting the backscattering surface by S and its normal towards the sensor 

by h. 

In the SB case, the field #Jt appearing in Equation (42) is simply given by the transmitted 

H-field Stt, i.e. [see Equation (39)], 

Hlfi) = H0 e-fk<p at = H0 J*p it. (43) 

Using Equations (32) and (42), one finds that the SB contribution due to S alone is 

M(f) = -*?f^[I ~ rr](n x at) f <?^? dS (44) 

where r' denotes points in S. 

3.2     Double-Bounce Integral Expression 

The dihedral exhibits two distinct double-bounce (DB) interactions. The first corresponds to 
backscattering by S2 of the portion of the transmitted wave that is reflected by Si and intercepted by 
S2, and the second is obtained by reversing the roles of Si and S2. Both interactions can be treated 
jointly by denoting the reflecting surface (the first) and its normal by SA and hA, respectively, and 
the backscattering surface (the second) and its normal by SB and nB, respectively. The part of SB 

illuminated by reflections from SA is denoted by SAB- 

In the DB case, the field ßit appearing in Equation (42) is obtained by reflecting the trans- 
mitted H-field Ht-t [given by Equation (39)] essentially according to GO: 

1. The wavevector £,• is obtained from kt by requiring that the reflection on SA reverse 
the sign of the component of kt corresponding to nA (necessarily either i or y), i.e., 

ki = kt- 2{kt.nA)hA. (45) 

2. The polarization vector a; is obtained from at by imposing the boundary conditions 
for the H-field on the perfectly conducting surface SA, i.e., that (a) the tangential 
components of the incident and reflected H-fields be equal, and that (b) the sum of 
their normal components be zero. One finds 

Oj = at - 2{ät.hA)hA- (46) 

16 



Therefore, 

Sit(?)   =    tfoe-^-^-^^'fo _ 2(at.nA)hA] 

=   H0e
i^-^-nA)nA}P[ät_2{ätMA)ÜA]. (47) 

Again, using Equations (32) and (42), one finds that the DB contribution due to surfaces 5A 

and SB encountered in that order is 

E!
ASB

(T) = -ikE
0°
e'lkr[I-fr](hBx[ät-2(ät.nA)nA}) f      e^'^^^'dSAB^) 

where r' denotes points in SAB- 

3.3     Complete Integral Expression 

The Equations (44) and (48) for the SB and DB contributions can be combined to get the total 
E-field backscattered by the dihedral, i.e., [notice the similarity with Equation (5) in Anderson's 
paper [14]], 

EPt(f) = -ikE^kT (P
SI

Q% + PS2Qp2
t + Ps^Qlf2 + P^Qlf1) (49) 

with 

Ps = (f.n)j e2ik^?dS (50) 

S  = [I-rr](nxat) 
rl f.h 

PSASB = ^Aß) f      e2ik[f-(r.hA)hA].?dSAB (52) 

JSAB 

QSASB = [I - rr](hB x [ät - 2(at.hA)hA]) 

The reason for introducing the apparently superfluous factors (f.h) and (f.hß) will become clear 
later. 
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In the next sections, one derives compact, closed-form expressions for the four quantities 
above. To do so, one will express f in terms of its components lx, ly, and lz, which are also the 

direction cosines of the sensor location, i.e., 

r = (lx:ly,lz) (54) 

with 

lx   —   sin# COS0 

ly ■ =   sin 6 sin <f> (55) 

lz    =   cos 8. 

3.4    Simple Expressions for PSi and P^2 

When S = Si, one has n = y and r' = (x, 0, z), so that Equation (50) becomes 

PSi    =    (r.y) f   e2ik{~lxX+lzZUSx 
JSi 

=   ly (f e2ikl**dx\ if12 e2ikl*zdz) . (56) 

i.e., 

pSi = abL eikal* sine k'alx sine k'blz (57) 

where 

and 

sm7ra; /t-Q\ 
sine a; =  I00; 

■KX 

k' = -. (59) 

When S = S2, one has h - x and ? = (0, y, z), so that Equation (50) similarly becomes 

Ps* - abL eikalv sine k'aL sine fc'6/*. (60) 
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_ c _ c 
3.5    Simple Expressions for Q-1 and Q~2 

One begins by rewriting the numerator A of the Equation (51) for Qpt as 

A   =   [I-rf](hxät) (61) 

=   0(0.(nxät)) + ^.(nxat)) (62) 

=   0(h.(ätx6)) + 4>(h.(ätx]>)) (63) 

where one has used Equation (34) and the cyclic property of the mixed product, i.e., a.(b X c) = 

b.(c x a). 

1. When pt - 0, Equation (41) gives at = 0.  Then Equation (61) reduces to (n.f)4>, 

and Equation (51) yields Q ? = <£. 

2. When pt = 0, Equation (41) gives at = -<j>. Then Equation (61) reduces to (n.r)0, 

and Equation (51) yields Qx = 9. 

As a result 

$ = $ = *• (64) 

_ c 
One motivation for introducing f.h in Equation (51) was to obtain a unit-length Q -1. 

Equation (64) indicates that the "return" from each individual SB interaction is co-polarized 
with the transmitted wave, both for horizontal transmit (<£) and for vertical transmit (0). 

3.6    Structures of the Illuminated Regions Su and £21 

The problem of determining the region of integration SAB appearing in Equation (52) must 
be examined carefully, especially because it appears to have been mishandled in the literature. 

The region SAB is found by tracing all the rays incident on SA through their reflections on 
SA- Each point of SB reached (i.e., illuminated) by a ray reflected from SA is part of SAB- Note 
that this section is based exclusively on ray tracing, i.e., on techniques from GO. 

Each incident ray travels along direction 

kt = -r = (-lx,-ly,-h) (65) 
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and goes through the plane of SA at some point xA. If xA is on SA, then the ray is reflected along 

direction [see Equation (45) with both sides divided by k)] 

kAB = ki = kt- 2(kt.hA)nA 

and, thus, goes through the plane of SB at some point xB given by 

(66) 

XB = XA + &AB kAB 
(67) 

where a AB is to be determined. 

In specializing these results to the SXS2 and S2S1 interactions, it is useful to temporarily 

restrict the analysis to the case 

£ < 1 , h > 0. (68) 

Of course, we are only interested in the case where lx, ly > 0. AU these constraints are equivalent 

to 

0 < <t> < T/4 and 0 < 0 < TT/2. (69) 

These restrictions will be removed later. 

3.6.1     5X52 Interaction 

Here, one has nA = y and thus Equation (66) can yield k12 = (-lxJy,~h)- Equation (67) 

can be written as 

(°) (  Xl) 
f-iA 

2/2 = 0 + ai2 ly 

\   ^   ) V zi ) V ~l* 1 

(70) 

20 



Eliminating ai2 and solving for (0:1,21), one gets 

l/y 

Z\      =     Z2 + fV2- 
(71) 

By imposing the constraint that the intercept point {xu zx) be in St (in order for the incident ray 

to be reflected), i.e., that 

0 < xi < a and   — | < 21 < 5 

one obtains the following constraints on (2:2,22) 

(72) 

0 < V2 < af 

Z2 + lfV2 + I > 0 (73) 

Z2 + f V2 - I < 0. 

In addition, (x2,z2) must be in S2 (in order for the reflected ray to be scattered by S2), so that 

< V2    < 

< z2    < 
(74) 

These two sets of inequalities fully define S\2. 

Careful analysis of these constraints reveals that, under the limitations of Equation (68), two 
canonically different structures for region Si2 must be considered. The first, S£, corresponds to 
the case lg/lx < b/a, and the second, 5f2, to lz/lx > b/a (see Figure 3). This dichotomy appears 
to have been overlooked in the literature (a more detailed discussion is given later). 
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3.6.2    S2Si Interaction 

Here, one has HA = x and thus Equation (66) yields k2\ = (lx, -ly, -h)- Equation (67) can 
be written as 

(X1) 
( 0  \ (    I       \ 

0 = 2/2 + «21 — ly 

V *i ) I   *2  ) {-Is) 

(75) 

Eliminating a2\ and solving for (2/2,22), one gets 

ly 
y2    =    fxi 

Z2 z1 + fxi 
(76) 

By imposing the constraint that the intercept point (y2,z2) be in S\ (in order for the incident ray 
to be reflected), i.e., that 

0 < 2/2 < a and   — | < z2 < (77) 

one obtains the following constraints on {x\,z\) 

0<xi<af 
ly 

Zl + lfX! + § > 0 

Zl+lfX!-%<0. 

(78) 

In addition, (xi, z\) must be in S\ (in order for the reflected ray to be scattered by Si), so that 

0    <    Xi    <    a 

-Ö      <      Zl      <       2- 

(79) 

These two sets of inequalities fully define 6*21. 

Here also, two canonically different structures for region S2\ must be considered. The coun- 

terpart of Figure 3 is Figure 4. 
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3.7    Simple Expressions for PSlSi and P^51 

Having determined the structures of the regions Su and £21, one can now evaluate P^i^z 
and P^Si using Equation (52). 

3.7.1    S1S2 Interaction 

With riA = y, riß = x, and r' - (0,y,z), Equation (52) can be written as 

PJiJ2 = ix I     e
2iklzZdS12. 

J D 

0S1S2 (80) 
'12 

When lz/lx < b/a, the region 5^ (see Figure 3) must be used and Equation (80) becomes 

ySiSs ='>r* i- '
2    F 

b 
"2 

-r-y      j 
y  e2iklzzdz dy. (81) 

When lz/lx > b/a, the region S12 (see Figure 3) must be used and Equation (80) becomes 

>SiS2 4 b   L 

= 1* I   z     l\        e2ikl*zdz 
Jo        J-~ö 

dy. (82) 

3.7.2    S2S1 Interaction 

With fiA = x,n,B = y, and r' = (x,Q,z), Equation (52) can be written as 

> 52 <S*i =l-L e2iklzzdSn_ (83) 

For lz/lx < b/a, one finds (see Figure 4) 

)S2Si ='»r / ---h-x 

'2 

*zdz dx. (84) 
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For lz/lx > b/a, one finds (see Figure 4) 

P&Si = /   f lz 
Jo 

r   b I 

G€ 2    L       2ikl *zdz dx. (85) 

It is useful to observe that the change of variable y - y'{ly/lx) in Equations (81) and (82) 
yields Equations (84) and (85), respectively. In other words, in all cases, 

pSiS2 _ pS2Si (86) 

This equality can also be proved graphically. It is clear from Figures 3 and 4 that S12 is simply S2i 
"compressed horizontally" by a factor ly/lx (note the common role of z0 in the figures). Therefore, 
the ratio of the integrals in Equations (80) and (83) is 

f 2iklzzdSi2 

fs    e2ikl*zdS2i      * X 

(87) 

Equation (86) follows immediately. Note that this equality is partially a result of the inclusion of 

r.hß in Equation (52). 

Straightforward integration of Equations (84) and (85) yields 

pS\S2 — pS^Si 

^h   Lik(b-dx)lz S[nck'dxlz - e~ikblz 
2ikbl 

abl y sine k'bL 0—ikblz 

(88) 

where 

dx = a (89) 

As one would expect, the results of Equation (88) become identical when lz/lx = b/a, in which case 

dx = b. 
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3.8     Simple Expressions for Q^2 and QS£Sl 

_ c   c 
One begins by rewriting the numerator B of the Equation (53) for Q ~A  B as 

B   =   [I - fr]{hB x [at - 2(ät.nA)hA}) (90) 

=    [I- rr](nB x at) - 2(at.hA)[I - rf](hB x hA) (91) 

=   (hB.(at x 0) - 2(ät.nA)[9.(hB x nA)})§ + hB.(ät x 4>)4> (92) 

where one has expanded the first and second [I-ff](...) expressions in Equation (91) by expressions 
similar to Equations (63) and (62), respectively, and used the fact that hB x hA is necessarily 

orthogonal to 4>. 

1. When pt = <£, Equation (41) gives at = 6. Using this value for at and noting that 
r = 6 x<f>, Equation (92) can be reduced, and Equation (53) yields 

QSASB = _2(9.nA)[e.(nBxnA)}§ + ^ 
(f) f.flB 

To further reduce the fraction above, proceed as follows. First, because nB x hA is 
parallel to z, one can express this product solely in terms of its components along 6 

and r, i.e., 

nB x nA = 6[6.{hB x nA)} + r[f.(nB x hA)}. (94) 

Second, transform each side, say s, of this expression by the operation s.nA, and use 
the fact that (nB x nA).hA = 0. One finds 

(§.nA)[e.(hB x hA)} + (r.hA)[r.(hB x nA)} = 0. (95) 

Finally, extracting from this expression the numerator appearing in Equation (93), 
one gets 

QSASB^2(r.nA)[r.(nBxhA)}§ + ^ 
<j> f.hB 

For the 5i^2 interaction, one has nA = y and nB = x, so that Equation (96) reduces 

to 

QSiS2=2klJ + ^ (97) 

For the 5*25i interaction, one has nA = x and nB = y, so that 

Q^Sl=-2lflJ + 4>. (98) 
9 ly 
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2. When pt = 0, Equation (41) gives at = -<f>, and then Equation (53) yields 

QSASB =(1 + 2(^A)[ö.(nBxhA)]\ ^ (99) 

6 \ r.nB ) 

To further reduce the fraction above, proceed as follows. First, because <j> is orthog- 
onal to z, one can express <£ solely in terms of its components along nA and hß, 

i.e., 

<j> = nA(4>.hA) + nB(4>.fiB)- (10°) 

Second, transform each side, say s, of this expression by the operation 0.(hB x s). 

One finds 

§.{nB x4>) = (j>.hA)[9.(nB x nA)\ (101) 

or, using the previously-used cyclic property of the mixed product, 

(]>.hA)[6.(nB x hA)] = -nB.r. (102) 

Finally, extracting from this expression the numerator appearing in Equation (99), 

one gets 

QSASB = _Q (103) 
9 

and, therefore, 

QSJS2 = QSJSl = -0. (104) 
6 0 

One motivation for introducing f.hB in Equation (53) was to obtain unit-length 

Q?lS2 and Q-2  x (the co-polarized components). 
0 0 

For horizontal transmit (<£), Equations (97) and (98) indicate that the "return" from each 
individual DB interaction has components that are both co-polarized and cross-polarized with the 
transmitted wave. However, when the sensor is in the plane (x,y), where lz = 0, the cross-polarized 
component vanishes.  Further conclusions regarding this component will be given when the joint 
return for the 5i^2 and S2S1 interactions are considered. 

In the case of vertical transmit (0), Equation (104) indicates that the "return" from each 
individual DB interaction is totally co-polarized with the transmitted wave. 
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3.9    Final Expression for the Backscattered Fields 

Some of theiesolts of Sections 3.6 and 3.7 were derived under the limitations of Equation (68), 
i.e., I < lx and 4 > 0. Simple symmetry arguments (or brute-force recalculation) show that all 
results can be generalized to arbitrary values of lx, ly, and lz (in the allowed ranges) by defining 

I     =   max(/j;,/y) 

ro   =   min(lx,ly) ^      > 

n    =    \lz\ 

and making the substitutions 

(106) 

throughout the preceeding results. 

In particular, the important dichotomy related to the sign of 

lx       a 

can be generalized by considering the sign of 

n _ b   __ \lz\ b (1Q8) 
I      a  ~~  max(lI,/j)     a 

Because of the observed equalities in Equations (64) and (86), one can rewrite Equation (49) 

as 

jyf) = JkEpe-^ [{pSl + pS2)QSi + pS,SHQSiS2 + QS,Sl)] {m) 

or, in terms of SB and DB contributions, 

ikE0e-ikr     SBöSB    pDBnDB) (110) 
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where 

pSB     _    pSi _|_ pS2 

Qpf   = Qp 
pDB 

Pt 
2pS\S2 

(111) 

\S\S2 , r)S2S\^ C  =  OJK^' + O^-). 

The reason for the seemingly arbitrary factors 2 and 0.5 above is explained below. 

The values of the four fundamental quantities in Equation (111) can be expressed by making 
the substitutions of Equation (106) in Equations (57), (60), (64), (88), (97), and (98). 

One finds 

with 

and 

PSB = ab sine k'bn(m eikal sine k'al + I elkam sine k'am) (112) 

Qpt =Pt = 
4>   iipt-4>(B. pol) 

0    ifpt = 0(Vpol) 
(113) 

pDB _ 
^^eik(b-din)n sinc k>dlnTl _ e-ikbnj    if dln < b 
ikbn 

abm 
ikdlnr 

(sine k'bn-e-Mn) if din > b 
(114) 

QD~B = 
-eimn0 + ^>   if& = #(Hpol) 

-§ if ßt = 9 (V po\) 
(115) 

din — a 

I 
(116) 

tin 
l2-m2 

Im 
(117) 
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One motivation for introducing the extra factors 2 and 0.5 in Equation (111) was to obtain unit- 
length vectors for the co-polarized components in Equation (115). 

3.10    Backscattered Field for kt Orthogonal to Crease 

In the special case where the transmitted wave travels in a direction orthogonal to the crease 
of the dihedral (i.e., when n = 0), Equations (112) to (117) can be reduced considerably. All 
simplifications are straightforward, except, perhaps, in the case of Equation (114). Because d\n = 0, 
the first expression for PSB must be used. Also, in the limit as n ->• 0, d\nn approaches 0 as n2, 
whereas bn approaches 0 as n. Therefore, 

PDB(n = 0)   =    Urn ^(eikbn - e~ikhn) 

=   2abm lim sine k'bn 
n->0 

=   2abm. 

Thus, for n — 0, 

>SB(n — C\\ — „h (™ Jkal   •   „ » /   ;   ,   ; Jka 

(118) 

P™(n = 0) = ab (TO etkat sine k'al + I elkam sine k'am) (119) 

nSB,       m      -       I   <£   ifpt = ^(Hpol) 
Q    (n = 0) = pt = <   . . (120) 

1 e ifft = ö(Vpoi) 

Püß(rc = 0) = 2a6m (121) 

~DB,       „s      J  <£      ifft = <£(Hpol) 
Q     (n = 0) = \      . „ (122) 

1   -0   ifft = 0(Vpol) V      ; 

with, of course, 

/ = \J\ — TO
2
 or TO = y/l - I2. (123) 

31 



4.   DISCUSSION OF RELATION BETWEEN n/l AND b/a 

This section explores the origin of the dichotomy related to the sign of the quantity n/l - b/a 
[see Equation (108)], and analyzes the mapping of this sign on a 3-D viewing sphere. 

4.1    Fundamental Observations 

Consider the dihedral positioned in the (a/, y', z') coordinate system as indicated in Figure 5 
(note that the origin is at the bottom end E of the dihedral's crease). To simplify the discussion, 
consider the special form lz/lx - b/a of the quantity n/l - b/a. As previously discussed, this special 
case arises when ly < lx (i.e., 0 < 4> < TT/4) and lz > 0 (i.e., 0 < 0 < x/2). The conclusions reached 
for this special case are easily extended to the general case via symmetry. 

Consider the plane AGE that contains the diagonal AE of Si and is perpendicular to 5X. It is 
simple to show that any transmitted plane wave with wavevector kt = (lx,ly,lz) in this plane (and 
with ly < lx and lz > 0) satisfies the equality of interest, i.e., lz/lx = b/a. Indeed, from Figure 5, 
El = b tan 6 and El = a/ cos <f>, so that 

cot6      b     .       lz      b no s 
= - , i.e., — = - l1^4) 

X cos0      a lx      ß 

where Equation (55) was used. 

If one (a) selects a particular wavevector in the previously considered plane AGE, say with 
direction GE (the corresponding kt is shown in Figure 5), (b) considers the plane GCE containing 
GE and perpendicular to 62, and (c) computes the y' coordinate of the intersection C ofthat plane 
with GH or, equivalently, the y1 coordinate of F, one finds y'F = El sin. $ - at&ncj)- aly/lx. Note 
that the line containing CF is also the line appearing in £2 in Figure 3. 

This discussion shows that any wavevector kt = (lx,ly,lz) satisfying lz/lx = b/a (and ly < lx, 
lz > 0) is defined by the intersection of two planes: (a) the plane perpendicular to Si and containing 
the diagonal AE of Si, and (b) the plane perpendicular to S2 and containing the diagonal CE of 
the rectangle BCFE uniquely defined by aly/lx. Similar conclusions can be reached for conditions 

other than ly < lx and lz > 0. 

The previous reasoning can be carried out elegantly via spherical trigonometry. Using the 
sphere shown in Figure 5 (with center E and radius a), consider some viewing direction GE. The 
intersection 0 of this line with the sphere, together with the three coordinate axes for x', y', and 
z', define the arcs of great circle DOM, JOK, and LON, respectively (e.g., the plane through 0 
and the x' axis defines DOM). 
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By applying one of Napier's rules [21, pp. 271-272] to the right spherical triangle ONJ, one 

finds 

cos <f> — cot 6 cot ay (125) 

which implies that lz/lx = b/a can be satisfied only if tana,, = b/a, i.e., only if the plane JKE 

contains the diagonal AE of Si. 

By applying a similar formula to ON D, one finds 

sin 4> = cot 0 cot ax (126) 

which, given the previous constraint on ay, gives tano^ = (b/a)(lx/ly), and thus EF = aly/lx. 

4.2 Partitioning of the Viewing Sphere 

Another advantage of the analysis on the sphere is that it provides an instant display of the 
partitioning of the viewing space by the boundary case lz/lx = b/a. Indeed, the boundary on the 
sphere of Figure 5 is the arc KOJ, restricted to 0 < <j> < 7r/4 because of the current limitation to 

ly < lx and lz > 0. 

A simple symmetry argument readily extends the conclusions to the general boundary case 
n/l = b/a. Figures 6(a) and 6(b) show the regions on the sphere that correspond to n/l < b/a and 
n/l > b/a for a long and a short dihedral, respectively (only for lz > 0). 

4.3 Physical Interpretation 

When lz/lx = b/a, it is clear from Figures 3 and 4 that F' merges with F and D' merges with 
D. The resulting diagonals BF and BD are shown in Figures 7(a) and 7(b). 

When lz/lx = b/a, Equation (71) reveals that the ray with direction kt that is reflected at A 
by Si arrives at F on S2. It is thus clear that the sheet of rays that is reflected by the edge AB 
exactly illuminates the diagonal BF, i.e., ah rays incident along AB hit S2 (along BF). This is 
illustrated in Figure 7(a). 

As previously observed, the direction kt must be parallel to both the plane AEF and the 
plane CED. Furthermore, Equation (76) reveals that the ray with direction kt that is reflected at 
C by S2 arrives at D on Si. Clearly, the sheet of rays reflected by the partial edge BC exactly 
illuminates the diagonal BD. This is illustrated in Figure 7(b). 
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4.4    Interpretation of Parameter dx 

A simple interpretation of the parameter dx denned by Equation (89) can be obtained from 
Figure 8 (which has many elements in common with Figure 5). As shown in Section 4.1, the 
arc JOK (where K is on the diagonal AE) corresponds to all incidence directions kt related by 
lz/lx = b/a. This observation and the definition in Equation (89), i.e., lz/lx = dx/a, immediately 
suggest a graphical construction for dx. By first drawing the arc JO'K' through the point 0' 
corresponding to the direction kt of interest, and then finding the intersection A' of the lines EK' 
and AD, one finds that dx is simply the length of the segment DA'. Clearly, an important value 
for dx [and its equivalent d\n given by Equation (116)] is 6, which corresponds to A' = A. Indeed, 
depending upon the relative values of dx (or din) and b, different expressions must be used for the 
DB contribution given by Equation (88) [or Equation (114)]. 
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kt = ('x>ly,lz) 

-£-<1    AND   lz>0 
'x 

Figure 5.    Geometry for studying sign of lz/lx — b/a. 
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Figure 8.    Graphical interpretation of parameter dx 
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5.   POLARIZATION SCATTERING MATRIX OF DIHEDRAL 

As indicated in Section 2.4, one should first derive the complex radar cross sections ~/crprpt 

given by Equation (15). Then one can obtain the elements Sß ß of the scattering matrix through 

Equation (16). The corresponding matrices y/ä and S can also be related through Equation (20). 

To continue keeping single-bounce (SB) and double-bounce (DB) contributions distinct, Equa- 

tion (110) is rewritten as 

Ept(f)^E^(f) + E^(f) (127) 

with 

4f« = -^f^eff <I28> 

Then, Equation (15) can be rewritten as 

j^=M+M (130) 

with 

Eßf(r).pr 
as~B~     =     lim2^r    P*V      e,7ir (131) 

PrPt r-oo    V E0 

  Ef.   (r).pr    ., 
a™     =    lim 2y/^r    P*yFr e*kr. (132) 

prpt r^oo E0 

5.1    Single-Bounce Complex Radar Cross-Section 

The general expression for the SB C-RCS is obtained from Equations (131), (128), (112), 

and (113), i.e., 

PrPt yft *P* 

=   Ks
a
Bpt.Pr (133) 
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where 

KSB _ _1LPSB (134) 

Therefore 

V^B = I^B( *   °   1. (135) 

5.2    Double-Bounce Complex Radar Cross-Section 

The general expression for the DB C-RCS is obtained from Equations (132), (129), (114), 

and (115), i.e., 

^F    =     _JLPDBQDB^ 

■Pr iffc = 0(Vpol) 

M   i   -fh« ö.pr + 0.pr   ifpt = 4> (H pol) 

where 

r^CB _ _^LpDB (137) 

Therefore 

V^s^z^I j (138) 
"QlM      — -L 

where [see Equation (117)] 

l2-m2 

€lmn~     Im    ' 
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For an arbitrary triplet of consistent values /, m, and n (e.g., requiring that I > m), eimn 

is generally nonzero and thus the matrix VaDB is not symmetric. When / > m, one has e/mn « 
(l/m)n, and this value can be large if n is not too small. However, these conditions correspond to 
large deviations of the wavevector kt from the principal axis of symmetry (characterized by I = m 
and n = 0) and thus to viewing directions where the PO approximation would not be expected 
to produce accurate results. For example, it is reported in Kouyoumjian [7, p. 871] that the PO 
prediction for scattering from a circular plate with radius a is satisfactory only within 20 deg of 
normal incidence for ka > 8.5. 

However, for orientations kt parallel either to the plane I = m or to the plane n — 0, Qmn is 
precisely zero. Furthermore, e\mn is very small in the vicinity of the principal axis of symmetry, 
where PO is expected to produce accurate results. As a result, one sets e;mn to zero in subsequent 
discussions, thereby making \faDB symmetric, i.e., 

y/^DB = KDB (140) 

The reason for the presence of e/mn in Equation (138), and thus the lack of symmetry of 
y/aDB, is the failure of PO to obey the reciprocity theorem [7, 8], with the result that bistatic 
(double-bounce in this case) cross sections are generally erroneous. 

5.3    Relative Importance of Single- and Double-Bounce Complex Radar Cross Sec- 
tions 

To compare the magnitude of the SB and DB C-RCS near the main axis of symmetry of 
the dihedral, we examine the ratio of the factors KfB and K%B [appearing in Equations (135) 
and (138)] in the case where l = m = \/2/2 and n = 0. Using Equations (119) and (121), one finds 

P- 
KSB 

KDB 
= 

pSB 
■'■sym 

pDB x sym 
= •    y ^ sincra— (141) 

Observe that p decreases towards 0 as ka increases. Furthermore, assuming ka > 8 (the requirement 
used in Kouyoumjian [7, p. 871] for PO to produce accurate results), one has 

< 
sinl.57r 

1.57T 1.5JT 
0.212. (142) 
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Therefore, the SB C-RCS can generally be assumed to be at least 13.5 dBs below the DB C-RCS. 
Even though this result was derived on the main axis of symmetry, there is a tendency for the DB 
C-RCS to dominate whenever n is small. Keeping in mind that the results obtained through the 
PO approximation are valid only in the vicinity of the main symmetry axis, the contribution of the 
SB C-RCS can generally be ignored, and the C-RCS matrix of the dihedral is often taken as 

1     0 
yfiKyfeDB = K?B\ ). (143) 

The observation that the DB interaction is generally more important than the SB interaction was 

also made in Corona et al. [10]. 

5.4    Double-Bounce Complex Radar Cross Section on the Symmetry Axis 

Setting 1 = m = A/2/2 and n = 0, and using Equations (137) and (121), one finds 

KDB    =_lLab^ (144) 

The co-polarized DB radar cross-sections (RCSs) are thus found to be 

2k2a2b2      8za2b2 

v -, -, = CTJä = (145) 
<M>~     00 7T A2      ' 

These results agree with the RCS values published, e.g. in Knott [11, Table 6-1, p. 178]. 

5.5     C-RCS Matrix in Circular Basis 

By applying the equivalent of Equation (31) for C-RCS matrices, one can derive from the 
dihedral linear-basis C-RCS matrix [see Equation (143)] 
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the dihedral circular-basis C-RCS matrix 

V*W) = K?B[   11)- (147) 

This last expression [and not Equation (146)] makes the dihedral an even-bounce (circular polar- 
ization) scatterer. 
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APPENDIX    A 
TRANSFORMATION OF SCATTERING MATRIX UNDER CHANGE OF 

POLARIZATION BASIS 

The rules governing the transformation of the scattering matrix when a change of polarization 
basis is performed are well-known. They are included here for completeness. This report's approach 
is a mix between those of Boerner et al. [22, 23] and Riegger [24]. 

A.l    Transformation of Basis Vectors 

Consider the transformation between the polarization bases (AB) and (A'B1) respectively 
characterized by their (unit-length) basis vectors hA,h,B and hA',hß', and assume that these vectors 
are related by Equation (24), i.e., 

h(A'B') = Th(AB) (A.l) 

or 

~hA> \ _ ( TA'A   TA>B W hA 

hß' /       \ Tß'A   TB>B J \ hB 

(A.2) 

As one shall see shortly, T is necessarily a unitary matrix. 

A.2    Transformation of Fields 

Any field E can be expressed in each of the (AB) and (A'B') bases as 

E   =   EAhA + EBhB (A.3) 

E   =   EA>hA> + EB'hB: (A-4) 

By using Equation (A.2), Equation (A.4) becomes 

E     =     EA>(TA<AhA+TA>BhB) + EB,(TB>AhA + TB>BhB) 

=   (TA,AEA' + TB>AEB>)hA + (TA>BEA'+TB<BEB')hB. (A.5) 
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Direct comparison of Equation (A.3) and (A.5) shows that 

EA \ = I TA>A   TB,A \(EA,\ (A 6) 

EB j      \ TA'B   
T

B'B J \ EB> ) 

or, more compactly, 

E{AB) = UE{A>B>) (AJ) 

where, in general, EiXY) denotes the two-element vector containing the components of E in the 

(XY) basis, and 

U = TT. (A.8) 

The fact that the total power in the (plane) wave corresponding to E or, equivalently, the magnitude 
of E, must remain constant under a change of basis leads to the requirement that U, and thus T, 

be unitary matrices, i.e., 

U~1 = U*T    and    |det(£0| = l (A.9) 

T~l=T*T    and    |det(T)| = l. (A.10) 

If (AB) is the linear basis (HV), and (A'B1) an elliptical basis with arbitrary orientation tp 

and arbitrary ellipticity r, one can show that [24] 

EiHV) = U(tl>,T)E{A,BI) (A.ll) 

with 

U(IP,T) = R(IP)H(T) (A.12) 

where R(tp) is the rotation matrix 

R(tß) = j (A-13) 
sin if)     cos ip    I 
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and H(T) the ellipticity matrix 

H(T) = 
COST    jsinr   i (A.14) 

j sin r    cos T 

It is useful to note that R(iß) and E(T) are unitary, with the consequence that their product, i.e., 

U(IJ),T), is also unitary (as previously announced). 

A.3    Transformation of Scattering Matrices 

The starting point is the Equation (9) defining the scattering matrix S in the linear basis 

(HV), i.e., 

E[HV) = a(k,r)SiHV)E\HV). (A-15) 

Now, as strange as it may seem, one will perform distinct changes of basis on the_ received and 
transmitted fields! W is expressed in a basis (A'rB'r) characterized by $ and rr, and P is expressed 
in a basis (A'tB't) characterized by V and rt. Therefore, using Equation (A.ll), Equation (A.15) 

becomes 

U(^rr)E
r

(A>rB>r) = a(k,r)S{HV)U(^,rt)E\A/tBlt) (A.16) 

or 

Er(A'rB'r) = <*k,rU-\i>,Tr)S{HV)U^,Tt)E\A,B,y (A.17) 

By generalizing Equation (A.15) to the case of distinct receive and transmit bases, one can 

write 

Er(A>B>) = ^)\KB'rXB'AA>tB>ty 
(A-18) 

Comparing Equations (A.17) and (A.18), one gets 

S
{A'rB'T,A'tB't) = r,(^^)V)^'r')' (A'19) 
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When Tr = rt = r, Equation (A.19) describes a true change of basis, i.e., 

VB') = U-'S^U = U*TS(HV)U (A.20) 

where (A'B') = (A'tB't) = (A'rB'r) and U = tf(0,r). However, this is not the formula to use for 

transforming S. 

The correct transformation is obtained by using rr = -rt = -r, in which case Equation (A.19) 

describes a pseudo change of basis, i.e., 

\KB'r,W
u-^-T)s^u(M- (A'21) 

It is easy to see that U'l(^, -r) = UT(tp, r), so that 

Vß') = uTs{HV)u (A-22) 

where it is understood that U = U(^P,r) corresponds to the (AtBt) basis and that the subscript 
(A'B') corresponds to the basis the transmitted field is transformed into. The transformation 
applied to the received field need not be known in order to use Equation (A.22), but it is easy to 

see that 

W,-r) = (C/Tr1 = ^. (A-23) 

Even though Equation (A.22) is the classical formula for transforming a scattering matrix, 
it is, once again, important to understand that this formula does not describe a true change of 

basis [24, p. 21]. 

Equation (A.22) can easily be generalized to handle transformations between arbitrary bases, 

say (AB) and (A'B'). Using Equation (A.22), one has 

•Vi-Bi)    =    UiS(HV)Ui (A_24) 

S{A2B2)    =    U^S{HV)U2. 
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It follows that 

(ufr's^ur1 = mris{A2B2)u2-' (A.25) 

and thus 

S{A2B2) = {U^U2fS(MBi){U^U2). (A.26) 

Furthermore, Equation (A.7) gives 

E(HV)    =    ^l^(AaBi) 

E(HV)     =     U2E(AiB2) 

(A.27) 

so that 

E{MBl) = V;lU2E{A2B2). (A-28) 

Therefore, it is clear from Equations (A.26) and (A.28) that if 

E{AB) = UE(A,BI) (A.29) 

then 

S(A>B>) = UTS{AB)U (A.30) 

which is the desired generalization of Equation (A.22). Furthermore, note that Equation (A.29) is 
identical to Equation (A.7) so that U = TT [see Equation (A.8)] where T is the matrix relating the 
basis vectors of the bases (AB) and (A'B'). 
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It should be observed that Equation (A.30) guarantees the conservation of the voltage (see [23, 

p. 211]) 

V = E(AB)S(AB)E(AB) ^    '     ' 

under a pseudo change of basis.   Indeed, using Equations (A.29) and (A.30), Equation (A.31) 

becomes 

V =    E(A,BI)U
TS(AB)UE{A'B') 

=     E(A>B')S(A'B')E(A'B')- *•    '     ' 
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APPENDIX    B 
ALTERNATE FORMULAS FOR THE TOTAL BACKSCATTERED FIELD 

Here, one uses Equations (110), (112), (113), (114), and (115) to derive a set of new expressions 
for the total backscattered field Ep . These expressions are written in a form that is as close as 
possible to results derived by Corona et al. [10]. The algebraic manipulations required to achieve 
this goal have the effect of mixing the SB and DB contributions (which may not always be desirable). 

When n/l < b/a, one has 

Sf) = 
ikE0e-ikr  , 
 ab 

27IT 

[sine k'bn(m eikal sine k'al + I ezkam sine k'am + 2m) 

—ÜLc«**(i _ e-ikdinn smc k'dlnn)]j> 
ikbn 

ikE0e~ikr   J2-m2 

j ab . n 

2-KT I 

[2 sine k'bn - -^-eikbn{l - e~ikd^n sine k'dlnn)]6 (B.l) 

E§(r) = 

ikE0e-ikr   ,  ab 
2-KT 

ikal „;__ ;„/„;   t   / Jkam [sine k'bn(m eikal sine k'al + I elkam sine k'am - 2m) 

+_ÜLe*Wi _ e-*4n sinc k'dlnn)]§. (B.2) 
ikbn 
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When n/l > b/a, one has 

E^f) = 

ikE0e~ikr  . 
 ao 

2K r 

[sine k'bn(m eikal sine k'al + I elkam sine k'am + ^j|^, 

m        -ikbnil 

ikdinn 
e-lkbn}(f> 

ikE0e~ikr     l2-m2 

-I ab ; n 

[_*—(sine k'bn - e-ikbn)}9 (B-3) 
ikd\nn 

E§(f) = 

ikE0e~ikr 

ab 
2irr 

[sine */&n(m eifca/ sine k'al + I eikam sine k'am - ^-^) 

! ,  m    c-«^]g. (B-4) 

The Equations (B.l) and (B.2) become very similar, but not identical, to the Equations (22) 
and (21) of Corona et al. [10] when I, m, and n are expressed in terms of cf> and 6 through Equa- 
tions (105) and (55). The differences are limited to the signs of some of the terms in the equations 
and the signs of the exponents in some of the complex exponentials. Of course, these sign differences 
are important. The author of this report has not been able to be explain these differences. 

The dichotomy related to the sign of n/l - b/a is overlooked in Corona et al. [10]. Ret- 
rospectively, the analysis in [10] corresponds to the case n/l < b/a. Thus, the equivalents of 

Equations (B.3) and (B.4) do not appear in [13]. 
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